Jump to content

Portal:Mathematics

Page semi-protected
From Wikipedia, the free encyclopedia


The Mathematics Portal

Mathematics is the study of representing and reasoning about abstract objects (such as numbers, points, spaces, sets, structures, and games). Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered. (Full article...)

  Featured articles are displayed here, which represent some of the best content on English Wikipedia.

Selected image – show another

animation showing what looks like a smaller inner cube with corners connected to those of a larger outer cube; the smaller cube passes through one face of the larger cube and becomes larger as the larger cube becomes smaller; eventually the smaller and larger cubes have switched positions and the animation repeats
animation showing what looks like a smaller inner cube with corners connected to those of a larger outer cube; the smaller cube passes through one face of the larger cube and becomes larger as the larger cube becomes smaller; eventually the smaller and larger cubes have switched positions and the animation repeats
A three-dimensional projection of a tesseract performing a simple rotation about a plane which bisects the figure from front-left to back-right and top to bottom. Also called an 8-cell or octachoron, a tesseract is the four-dimensional analog of the cube (i.e., a 4-D hypercube, or 4-cube), where motion along the fourth dimension is often a representation for bounded transformations of the cube through time. The tesseract is to the cube as the cube is to the square. Tesseracts and other polytopes can be used as the basis for the network topology when linking multiple processors in parallel computing.

Good articles – load new batch

  These are Good articles, which meet a core set of high editorial standards.

Did you know (auto-generated)load new batch

More did you know – view different entries

Did you know...
Did you know...
Showing 7 items out of 75

Selected article – show another


The region between two loxodromes on a geometric sphere.
Image credit: Karthik Narayanaswami

The Riemann sphere is a way of extending the plane of complex numbers with one additional point at infinity, in a way that makes expressions such as

well-behaved and useful, at least in certain contexts. It is named after 19th century mathematician Bernhard Riemann. It is also called the complex projective line, denoted CP1.

On a purely algebraic level, the complex numbers with an extra infinity element constitute a number system known as the extended complex numbers. Arithmetic with infinity does not obey all of the usual rules of algebra, and so the extended complex numbers do not form a field. However, the Riemann sphere is geometrically and analytically well-behaved, even near infinity; it is a one-dimensional complex manifold, also called a Riemann surface.

In complex analysis, the Riemann sphere facilitates an elegant theory of meromorphic functions. The Riemann sphere is ubiquitous in projective geometry and algebraic geometry as a fundamental example of a complex manifold, projective space, and algebraic variety. It also finds utility in other disciplines that depend on analysis and geometry, such as quantum mechanics and other branches of physics. (Full article...)

View all selected articles

Subcategories


Full category tree. Select [►] to view subcategories.

Topics in mathematics

General Foundations Number theory Discrete mathematics


Algebra Analysis Geometry and topology Applied mathematics
Source

Index of mathematics articles

ARTICLE INDEX:
MATHEMATICIANS:

WikiProjects

WikiProjects The Mathematics WikiProject is the center for mathematics-related editing on Wikipedia. Join the discussion on the project's talk page.

In other Wikimedia projects

The following Wikimedia Foundation sister projects provide more on this subject:

More portals

  1. ^ Galambos & Woeginger (1995); Brown (1979); Liang (1980).